
Gary King - EKSLOctober 2003 University of Massachusetts, Amherst

LIsp Framework for Testing

An introduction
and more

Add
Corporate

Logo
Here

University of Massachusetts, Amherst Gary King - EKSLOctober 2003

Outline

• Testing and LIFT
• What’s good about LIFT
• Problems with LIFT
• What I’d really like to see

University of Massachusetts, Amherst Gary King - EKSLOctober 2003

Why Test?

• Machines are so fast and storage capacities are so huge
that we face orders of magnitude more room for
confusion, the propagation and diffusion of which are
easily inadvertently mechanized.

 -- Edsger W. Dijkstra memo 1243

 source: http://www.cs.utexas.edu/users/EWD/

University of Massachusetts, Amherst Gary King - EKSLOctober 2003

Guidelines for Design

• Being a better programmer ... is about avoiding those
complexities that increase the number of reasoning steps
needed to keep the design under strict intellectual control.

 -- Edsger W. Dijkstra memo 1209

University of Massachusetts, Amherst Gary King - EKSLOctober 2003

Why Test?

• We test to make sure we did what we
wanted to do,

• We test to make sure we have not
undone what we did not want to undo.

University of Massachusetts, Amherst Gary King - EKSLOctober 2003

Testing in XP

• Extreme programming advocates test-a-little /
code-a-little programming
– In part as a way of growing a design

– Enables rapid prototyping and fearless refactoring

• A test system provides confidence and
increases the speed of development--
changes are less error prone and
experimentation becomes easier.

University of Massachusetts, Amherst Gary King - EKSLOctober 2003

Testing in Lisp…

• Common Lisp has no standard testing
tools.

• Most testing is done by writing ad hoc
code or by using the conditional
evaluation reader macro #+

• This style is fine for interactive
development but does not support
regression testing or long term stability

University of Massachusetts, Amherst Gary King - EKSLOctober 2003

What is LIFT?

• LIFT is a set of macros that make building
regression tests as easy to build as
interactive ones.

• LIFT is a framework that makes it easy to
structure tests into a hierarchy and to give
each test its own working environment.

• LIFT is in the family of Kent Beck inspired
SUnit testing tools

University of Massachusetts, Amherst Gary King - EKSLOctober 2003

LIFT has friends
(alphabetically)

• CLUnit
– Adrian

• FiveAM
– Baringer

• SchemeUnit
– Welsh et. al.

• XPTest
– Brozefsky

• …
• And non SUnit based

– Franz Allegro’s
– Richard Water’s RT
– …

• Others probably
exist

• All are worthy
• Combining them

would be
worthwhile…

University of Massachusetts, Amherst Gary King - EKSLOctober 2003

(deftest test-file-system ()
 ((filename "test-file")
 (data '(1 2 3 4)))
 (:setup (with-open-file
 (s filename
 :direction :output)
 (write data :stream s)))
 (:teardown (delete-file filename)))

(addtest (test-file-system)
 read-what-was-written
 (with-open-file (s filename)
 (ensure (equal (read s) data))))
==> (prints) Test passed!

(deftest test-file-system ()
 ((filename "test-file")
 (data '(1 2 3 4)))
 (:setup (with-open-file
 (s filename
 :direction :output)
 (write data :stream s)))
 (:teardown (delete-file filename)))

(addtest (test-file-system)
 read-what-was-written
 (with-open-file (s filename)
 (ensure (equal (read s) data))))
==> (prints) Test passed!

Simple Example

(defparameter *filename* "test-file")
(defparameter *test-data* '(1 2 3 4))

;; setup
(with-open-file
 (s *filename* :direction :output)
 (write *test-data* :stream s))
==> (1 2 3 4)

;; the test
(with-open-file (s *filename*)
 (equal (read s) *test-data*))
==> T

;; cleanup
(delete-file *filename*)

Success!

University of Massachusetts, Amherst Gary King - EKSLOctober 2003

LIFT in a nutshell

• deftest
– Creates a test class (which will include many

tests). The class provides a place for common
variables and for test setup and teardown.

• addtest
– Adds a test case to a test class

• run-tests
– Runs the test cases in a test class (and its

subclasses)

University of Massachusetts, Amherst Gary King - EKSLOctober 2003

Supporting Players

• undeftest
– Remove a test case from a test class

• Ensure, ensure-equal, ensure-warning
and ensure-error
– Tests an assertion and logs failures and

errors
• Plus...

– Some variables to control default behavior

University of Massachusetts, Amherst Gary King - EKSLOctober 2003

One More Example

(deftest test-binary-search-tree ()
 ((b (make-container 'binary-search-tree)))
 (:setup (empty! b))
 (:tests
 ((insert-item b 2) ;; test #1
 (ensure (not (empty-p b))))
 (ensure (empty-p b)))) ;; test #2

(addtest
 (insert-item b 2)
 (insert-item b 3)
 (delete-item b 2)
 (ensure-equal (size b) 5000)))

Test Suite: TEST-BINARY-SEARCH-TREE -- 1 Failure, 0 Errors ***
;-----------------------------------
Failure: TEST-BINARY-SEARCH-TREE.TEST-4
Condition: Ensure-equal: 1 is not EQUAL to 5000 in ((SIZE B) 5000)
Code: ((INSERT-ITEM B 2) (INSERT-ITEM B 3) (DELETE-ITEM B 2)
 (ENSURE-EQUAL (SIZE B) 5000))

Whoopts!

University of Massachusetts, Amherst Gary King - EKSLOctober 2003

Outline

• Testing and LIFT

• What’s good about LIFT
• Problems with LIFT
• What I’d really like to see

University of Massachusetts, Amherst Gary King - EKSLOctober 2003

The Good

• It fits with Lisp
– Interactive
– Clean
– Simple

• It does what it is supposed to do!

University of Massachusetts, Amherst Gary King - EKSLOctober 2003

Outline

• Testing and LIFT
• What’s good about LIFT

• Problems with LIFT
• What I’d really like to see

University of Massachusetts, Amherst Gary King - EKSLOctober 2003

What’s Wrong

• Testing Macros
• Test Organization

– Tool integration
– GUI, etc.

University of Massachusetts, Amherst Gary King - EKSLOctober 2003

Macro Problems

• Start with a macro and a test
 (defmacro my-macro (a b c)
 `(+ ,a (* ,b ,c)))

 (deftest test-my-macro () ())
 (addtest test-1
 (ensure-equal (my-macro 1 2 3) 7))
 ==> (prints) Test Passed!

• Change the macro
 (defmacro my-macro (a b c)
 `(list ,a ,b ,c))

 (run-test)
 ==> (prints) Test Passed!

Uh Oh!

University of Massachusetts, Amherst Gary King - EKSLOctober 2003

Macro Problems - 2

• Work-around: test the expansion

– But depends on how the macro works, not on
what the macro is supposed to do

• Can write macros to call functions and then
test these functions

• Could use reflection to automatically re-
evaluate tests with changed macros…

(addtest (test-bind)
 expand-2-in-1
 (ensure (equal (macroexpand
 '(bind ((a 1) b)
 (declare (fixnum a) (dynamic-extent b))))
 '(let ((a 1))
 (declare (type fixnum a))
 (let (b)
 (declare (dynamic-extent b)))))))

University of Massachusetts, Amherst Gary King - EKSLOctober 2003

Organization

• So many tests, where to put ‘em
– Same file? Different files?

• So many tests, how to set up a
hierarchy

• So much old code, how to write tests
for it all

• Need tools to manage it all…
– CVS integration, GUI, etc.

University of Massachusetts, Amherst Gary King - EKSLOctober 2003

Outline

• Testing and LIFT
• What’s good about LIFT
• Problems with LIFT

• What I’d really like to see

University of Massachusetts, Amherst Gary King - EKSLOctober 2003

Where we are

• The code is “ours” (and only ours)
• We get feedback from the compiler, from

tools and from execution

• Rinse, lather, repeat

University of Massachusetts, Amherst Gary King - EKSLOctober 2003

What’s missing? Design Checks

• Even with organic growth, design
suffers
– No way to “codify” the design
– Implementation forces compromise

• Too much left to the programmer
– All that room for Dijkstra’s “mechanically

propagated confusion”

University of Massachusetts, Amherst Gary King - EKSLOctober 2003

What we need

• Specify code and meta-code
– Contracts, constraints, capabilities
– Types, yes but also:

• This class can never be instantiated directly
(generally at run-time),

• This class should always precede that class in
the precedence list (generally static)

• These classes never get used (runtime
information)

University of Massachusetts, Amherst Gary King - EKSLOctober 2003

And more!

• Specification of protocols
– Issues in the Design and Specification of Class

Libraries. Kiczales and Lamping, 1992

• Examples:
– Every method of this GF must call that GF

– This method may not be overridden (only
extended via :after methods)

– If this method is overridden, then so must that
method

University of Massachusetts, Amherst Gary King - EKSLOctober 2003

What’s missing: sketching

• Human’s are not linear
– Many of us like to sketch

• But compilers want things in order
• Lisp does this already

– with-compilation-unit

• But it could do much more

University of Massachusetts, Amherst Gary King - EKSLOctober 2003

What we need

• Track problems
– Understand what

actions will fix them
• cf. Constraint

satisfaction

– Interact with person
– Facilitate coding

as sketching

University of Massachusetts, Amherst Gary King - EKSLOctober 2003

YA Programmers Asst.

• Let the programming environment share the
code and interact with the programmer
– This special variable is declared in “file-1” but

used in “file-2” which is loaded before “file-1”. Do
you want to fix it?

– The variable “foo” isn’t used by the function, do
you want to declare it ignorable?

• These are mechanical corrections that a
computer can notice and fix

University of Massachusetts, Amherst Gary King - EKSLOctober 2003

Declarative Compilation

• If compiler optimizations are encoded
declaratively as rules and transformations

• Then the system could infer that knowing
more about types could provide “meaningful”
optimizations in speed or time

• I.e., the programming environment could say
– “It looks as if array is a simple-vector, declaring it

so should double the speed of function foo.”

University of Massachusetts, Amherst Gary King - EKSLOctober 2003

Related work

• Declarative Meta-programming
– http://prog.vub.ac.be/research/DMP/
– “The aim is to try to capture and formally express the interaction

between the higher phases of software development (design,
analysis, etc...) and the actual implementation level.”

• Flavors could capture parts of the design
– :required-methods, :required-flavors, etc…

• Refactoring code browsers
– Eclipse and IntelliJ for Java
– Refactoring Browser for SmallTalk

• Programming by transformation, etc…

University of Massachusetts, Amherst Gary King - EKSLOctober 2003

Big Fuzzy Bubble Picture

University of Massachusetts, Amherst Gary King - EKSLOctober 2003

Caveat

• LIFT exists, the rest of this is hand
waving.

• I’d love to hear comments, critiques and
stories of what’s been done and what
can be done better.

• E-mail me at gwking@metabang.com

